Minggu, 13 Juni 2010

PREPARATION OF POROUS CARBON MATERIAL BY PYROLYSIS OF PHENOL AND P-TERT-BUTYLPHENOL WITH FORMALDEHYDE :

Operating Condition Influence of Pyrolysis to Internal Surface Area and Mean pore diameter

Endro Wahyono

Magister Teknik Pengendalian Pencemaran Lingkungan,

Jurusan Teknik Kimia, Fakultas Teknik UGM

Abstract

Porous carbon material is carbon type which has internal surface area as specific characteristic. One way to produce this material is by pyrolisis using nature or synthetic substance as precursor. Pyrolisis process as describe above, will cause non-carbon atom as composer of polymer substance will disperse and evaporate, this process will left carbon charcoal as residue with specific atom frame structure atom carbon matching with chain structure precursor polymer and building coordinated pore network. Purpose of this research is to get optimum operational condition of pyrolisis process including temperature, remp rate and thermal soak time.

Production process of porous carbon material start by making precursor in the form of phenolic resin by reacting phenol (C6H5OH) and p-tert-butylphenol (C10H14O) with formaldehyde (CH2O) using acid as catalyst. Controlled process parameter in making chain network phenolic resin is catalyst, and type of reactant used in polymeration reaction. By controlling certain parameters as mention above, network of polymer chain formed can be directed as we please. Phenolic resin precursor then pirolised by optimizing operation condition in retort, at temperature about 400-900oC, ramp rate 1,67-10oC/minute, thermal soak time 15-150 minute and activating process using phosphate acid (H3PO4). To know the characteristic of porous carbon material formed, done by undergo adsorption test with nitrogen gas at temperature of 77K (-196oC), Scanning Electron Microscope (SEM) test and iodine number test. From this characterization process, we can see internal surface area, pore size distribution, average pore diameter, strength of liquid adsorption, and visualization of porous carbon material.

Based on result of this research, the optimum temperature for this operation is at 900oC with activation process using phosphate acid, where obtained internal surface area is 2.828 m2/g. The optimum ramp rate is 1,67oC/minute with internal surface area 973 m2/g. From iodine number test is bigger correspond to internal surface area.

Keyword: Porous carbon material, Phenolic resin, Pyrolisis

Intisari

Material karbon berpori adalah tipe karbon yang mempunyai ciri khas adanya luas permukaan internal. Salah satu cara untuk menghasilkan material tersebut, dapat dengan cara melakukan pirolisis menggunakan bahan alam maupun sintetis sebagai prekursor. Proses pirolisis ini akan menyebabkan atom non-karbon penyusun bahan polimer terurai dan menguap sehingga hanya menyisakan arang karbon dengan struktur kerangka atom karbon yang spesifik sesuai dengan struktur rantai polimer prekursor dan membentuk jaringan pori secara teratur. Penelitian ini bertujuan untuk mendapatkan kondisi operasi proses pirolisis yang optimum meliputi suhu, laju kenaikan suhu pemanasan (ramp rate) dan waktu (thermal soak time).

Proses pembuatan material karbon berpori diawali dengan membuat prekursor berupa phenolic resin dengan cara mereaksikan antara fenol (C6H5OH) dan para-tersierbutilfenol (C10H14O) dengan formaldehyde (CH2O) menggunakan katalis asam. Parameter proses yang dikontrol dalam rangka pembentukan jaringan rantai polimer phenolic resin adalah katalis, dan jenis reaktan yang dipergunakan dalam reaksi polimerisasi. Dengan mengendalikan beberapa parameter tersebut, jaringan rantai polimer yang terbentuk dapat diarahkan sesuai dengan yang diinginkan. Prekursor berupa phenolic resin tersebut kemudian dipirolisis dengan melakukan optimasi kondisi operasi dalam retort, pada kisaran suhu 400-900oC, laju kenaikan suhu pemanasan 1,67-10 oC/menit, dan waktu selama 15-150 menit serta melakukan proses aktivasi menggunakan asam fosfat (H3PO4). Untuk mengetahui karakteristik material karbon berpori yang dihasilkan, dilakukan uji adsorpsi dengan gas nitrogen pada suhu 77 K (-196oC), uji Scanning Electron Microscope (SEM) dan uji iodine number. Dari proses karakterisasi ini dapat dilihat luas permukaan internal, distribusi ukuran pori, diameter pori rata-rata, daya serap dalam cairan dan visualisasi material kabon berpori tersebut.

Berdasarkan hasil penelitian suhu operasi yang optimum pada 900oC dengan proses aktifasi menggunakan asam fosfat, dimana diperoleh internal surface area sebesar 2.828 m2/g. Untuk pengaruh laju kenaikan suhu pemanasan dihasilkan kondisi optimum pada 1,67oC/menit dengan internal surface area 973 m2/g. Sedangkan untuk waktu (thermal soak time) diperoleh kondisi operasi optimum pada waktu 90 menit dengan internal surface area 1.196 m2/g. Dari uji iodine number diperoleh hasil semakin besar sesuai internal surface area.

Keywords: Material karbon berpori, Phenolic resin, Pirolisis


Kesimpulan

1. Pada proses optimasi perubahan suhu pirolisis terhadap internal surface area, didapatkan kesimpulan semakin tinggi suhu pirolisis maka internal surface area yang dihasilkan akan semakin besar. Sedangkan diameter pori rata-rata berdasarkan metode Durbinin Astakhov semakin tinggi suhu pirolisis tidak mempengaruhi diameternya. Dan untuk distribusi ukuran pori dengan naiknya suhu pirolisis akan diperoleh hasil semakin seragam berdasarkan metode Horvath Kawazoe. Dari hasil penelitian diperoleh internal surface area tertinggi pada suhu 900oC sebesar 2.572 m2/g sebelum dilakukan aktifasi dan 2.828 m2/g setelah proses aktifasi, dengan ukuran pori termasuk mikropori yaitu dibawah 2 nm.

2. Pengaruh laju kenaikan suhu pemanasan (ramp rate) pirolisis terhadap internal surface area adalah dimana semakin lambat laju pemanasan, akan diperoleh internal surface area semakin besar. Hasil penelitian menunjukkan dengan ramp rate paling lambat internal surface area yang dihasilkan adalah 973 m2/g pada 1,67oC/menit. Sedangkan untuk distribusi ukuran pori semakin lambat ramp rate diperoleh hasil material karbon berpori semakin seragam berdasarkan grafik kesetimbangan adsorpsi desorpsi dimana tidak terjadi hysteresis. Diameter pori rata-rata yang dihasilkan termasuk mikropori dengan ukuran dibawah 2 nm.

3. Penelitian waktu proses pirolisis (thermal soak time) diperoleh internal surface area terbesar pada thermal soak time 90 menit yaitu sebesar 1.196 m2/g, pada proses ini terlihat kenaikkan internal surface area pada waktu 15-90 menit, selanjutnya mengalami penurunan pada 120 menit dan meningkat lagi pada 150 menit, akan tetapi semakin lama waktu thermal soak time fenomena hysteresis juga tidak terjadi. Jadi semakin lama waktu thermal soak time akan mempengaruhi pembentukan pori dan diameter pori rata-rata yang dihasilkan juga termasuk mikropori dengan ukuran dibawah 2 nm. Pada optimasi thermal soak time seiring dengan lamanya waktu terjadi penurunan diameter pori yang dihasilkan.

4. Berdasarkan uji iodine number diperoleh hasil pada suhu 550oC dengan bilangan iodine sebesar 252 mg/g, suhu 650oC (650 mg/g) dan suhu 700oC (839 mg/g). Berdasarkan hasil penelitian terlihat semakin besar internal surface area juga semakin besar pula bilangan iodinenya. Dari hasil uji pada kondisi operasi minimal 650oC sudah dapat digunakan untuk aplikasi pada fase cair dilihat hasil bilangan iodine yang diperoleh diatas 500 mg/g.

Daftar Pustaka

Ahmadpour, A and Do, D. D., 1995, The preparation of Active Carbon from Coal by Chemical and Physical Activation, Carbon, 34, pp 471-473, 476-478.

Bajia, S. C., Swarnkar, P., Kumar, S., Bajia, B., 2007, Microwave Assisted Synthesis of Phenol-Formaldehyde Resole, Department of Pure and Applied Chemistry, Maharshi Dayanand Saraswati University, Ajmer-305009.

Baker, F., 1996, production of highly microporous Activated carbon products, US Patent 5,710,092, January 20, 1998.

Barsema, J. N., 2004, Carbon Membrane Precursor, Preparation and Functionalization, Partners Ipskamp, Enschede

Burchell, T. D. And Judkins, R. R. 1996, Passive CO2 Removal Using A Carbon Fiber Composite Molecular Sieve, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 USA.

Centeno, T. A., Vilas, J. L., Fuertes, A. B., 2003, Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation, Instituto Nacional del Carbón (CSIC), Apartado 73, 33080 Oviedo, Spain, Departamento Qu´ımica F´ısica, Facultad de Ciencias, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao, Spain.

Chang, C. H. and Stella, A., 1996, Carbon Molecular Sieves Derived From Polymers For Natural Gas Storage, AlliedSignal Inc. Des Plaines, IL 60017.

Conner, A. H., River, C. B. H., and Lorenz, L. F. 1986, Carbohydrate Modfied Phenol-Formaldehyde Resins, Forest Products Laboratory, 1 Forest Service U.S. Department of Agriculture Madison, Wisconsin.

D’alelio, A. B., 1948, Experimental Plastics and Synthetic Resins, 3ed., John Wiley and Sons, Inc., London.

Do, D. D., 1998, Adsorption analysis : Equilibria and Kinetics, Department of Chemical Engineering, University of Queensland, Australia.

Durgunoglu, T. and Mitchell, J. K., 1964, Feasibility Study of Admixture Soil Stabilization With Phenolic Resins, procedures for testing soils.

Edoga, M. O. and Kovo, A. S., 2006, Development and Characterization of Fenol - Formaldehid Molding Powder, Department of Chemical Engineering, Federal University of Technology, Minna, Nigeria.

Hill, C. G. Jr., 1977, An Introduction To Chemical Engineering Kinetics & Reactor Design, John Wiley & Sons, Inc.

Hoffman, E. N., 2006, Carbide Derived Carbon from MAX-Phases and their Separation Applications, Drexel University

Johnson, S. A., Brigham, E. S., Ollivier, P. J., and Mallouk, T. E., 1997, Effect of Micropore Topology on the Strukture and Properties of Zeoilte Polymer Replicas, Departement of Chemistry, The Pennsylvania State University, University Park, Pensylvania 16802.

Kirk, R.E. and Othmer, D.F., 1992, Encyclopedia of Chemical Tecnology, vol. 18, Interscience Publishing Inc., New York.

Knaebel, K. S., 2006, Adsorbent selection, Adsorption research, inc, Dublin, Ohio 43016.

Laine, J., 1991, Effect of The Preparation Method on The Pore Size Distribution of Activated Carbon from Coconut Shell, carbon, 30 p. 601.

Lenghaus, K., Qiao, G. G., Solomon, D. H., Gomez, C., Reinoso, F. R. and Escribano, A. S., 2001, Controlling carbon microporosity: the structure of carbons obtained from different phenolic resin precursors, Polymer Science Group , Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia Departamento de Quimica Inorganica, Universidad de Alicante, Alicante, Spain.

Lowell, S. and Shields, J. E., 1984, Powder Surface Area and Porosity, second edition, Department of Chemical Engineering, University of Technology Lougborough.

Manocha, S. M. 2003, Porous Carbons, Department of Materials Science, Sardar Patel University, Vallabh Vidyanagar 388 120, India.

Meisner, G. P. and Hu, Q., 2009, High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches, Materials and Processes Laboratory, General Motors R&D Center, Warren, MI 48090, USA and School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Misra, K., Kapoor, S. K. and Bansal, R. C., 2002, Regeneration of granular activated carbon loaded with explosives, Centre for Environment and Explosives Safety, Metcalfe House, Department of Chemical Engineering, Punjab University, Chandigarh, India.

Morton, R. T., 1999, Low Temperature Separation Of Hydrogen and Metane in SSF Membranes, Department of Chemical and Petroleum Engineering Calgary, Alberta, Canada.

Mustafa, A., 2006, Development Of Asymmetric Carbon Hollow Fiber Membrane For Gas Separation, Membrane Research Unit Faculty Of Chemical And Natural Resources Engineering, Universiti Teknologi Malaysia

Nakashima, M., Shimada, S. and Inagaki, M., 1995, On The Adsorption of CO2 by Molecular Sieve Carbons-Volumetric And Gravimetric, Studies Faculty of Engineering, Hokkaido University, Sapporo, 060 Japan

Nicholas, T. M., Qi. H. and University. J. L., 2007, Synthesis of Small Diameter Carbon Nanotubes and Microporous Carbon Materials for Hydrogen Storage, Oak Ridge Nation Lab, Rice University, universitas of Georgia.

Oh. S. M, Hyeon, T. H and Han, S.J. 2003, Method for Preparing Nanoporous Carbon Material And Electric Doube-Layer Capasitors Using Them, United States Patent, US 6.515.845 B1.

Oliveira, E. C., Cléo, T. G. V. M. T. and Pastore, H. O., 2006, Why are carbon molecular sieves interesting?, J. Braz. Chem. Soc. vol.17 no.1 São Paulo Jan, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas-SP, Brazil.

Otowa and Yoshiro, 1991, Production of High Quality Activated Carbon, US Patent 5,064,805, November 12, 1991.

Rodney, L. Mieville, R. L. and Robinson, K. K., 2005, Carbon molecular sieves and other porous carbons Synthesis and Applications, Mega-Carbon Company 103 N. 11th Avenue, Suite 114 St. Charles, IL 60175.

Shahsavand, A. and Ahmadpour, A., 2005, Application of optimal RBF neural networks for optimization and characterization of porous materials, Chemical Engineering Department, Ferdowsi University of Mashad, P.O. Box 91775-1111, Mashad, Iran.

Soares, J. L., José, H. J. And Moreira R. F. P. M., 2003, Preparation of a carbon molecular sieve and application to separation of N2, O2 and CO2 in a fixed bed, Journal of the Brazilian Chemical Society.

Son, S. J., Choi, J. S., Choo, K. Y., Song, S. D, Vijayalakshmi, S. and Kim, T. H., 2007, Development of carbon dioxide adsorbents using carbon materials prepared from coconut shell, Department of Physics, Hanseo University, 356-820 Chungnam, Korea.

Stell, K.M., and Koros, W. J., 2005, An investigation of the effects of pyrolisis parameter on gas separation properties of carbon material, school of Chemical Engineering, Georgia Institute of technology, Atlanta, United States.

Stucky, G.D., 1998, High Surface Area Materials, Departments of Chemistry, Materials University of California, Santa Barbara Santa Barbara, CA 93106

Su, F., Zeng, J., Yu, Y, Lv, L, Lee, J. Y. and Zhao, X.S., 2005, Template synthesis of microporous carbon for direct methanol fuel cell application, Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.

Suzuki, M., 1990, Adsorption Engineering, Kodansha Ltd., Tokyo And Elsevier Science Publishers B. V., Amsterdam.

Tarasenko, A. A. and Lysenko, A. A., 2007, Porous Carbon Composites For Fuel Cells, Fibre Chemistry Vol.39. No 2.

Tran, T. D., Feikert, J., Pekala, R.W., Miller, J. and Dunn, B., 1995, Lithium intercalation in Porous Carbon Electodes, Material Research Society san Francisco.

Urbonaite, S., Juarez-Galan, J. M., Leis, J., Rodriguez-Reinoso, F., and Svensson, G., 2007, Porosity development along the synthesis of carbons from metal carbides, division of structural chemistry, Arrhenius Laboratory Stockholm University, S-10691 Stockholm Sweden.

Vyas, S. N., Patwardhan, S. R., S. Vijayalakshmi, S. and Gangadhar, B., 1993, Synthesis of carbon molecular sieves by activation and coke deposition, Department of Chemical Engineering, Indian Institute of Technology, Bombay-400076, India.

Wei, W., Haoquan, H , You, L. and Chen, G., 2001, Preparation of carbon molecular sieve membrane from phenol–formaldehyde Novolac resin, Department of Chemical Engineering , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon, Hong Kong ,PR China.

Williams, P. J., 2006, Analysis Of Factors Influencing The Performanceof CMS Membranes For Gas Separation, Georgia Institute of Technology.

Yang, R. T. 2003, Adsorbents: Fundamentals And Applications, John Wiley & Sons, Inc. All rights reserved.

Zeng, J, Su. F., Lee, J. Y., Zhou, W.and Zhao, X. S., 2006, Methanol oxidation activities of Pt nanoparticles supported on microporous carbon with and without a graphitic shell, Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore.

Zhang, T., Walawender, W. P., and Fan, L. T., 2005, Preparation of carbon molecular sieves by carbon deposition from methane, Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506-5012, USA.

Zhang, X., Hu, H., Zhu, Y. and Zhu S., 2006, Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Maanshan 243002, PR China.

Zhang, X., Hu, H., Zhu, Y. and Zhu, S., 2006, Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly(ethylene glycol), School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Maanshan 243002, PR China.

Tidak ada komentar:

Posting Komentar